Stable Diffusion | Sheetly Cheat Sheet

Last Updated: November 21, 2025

Stable Diffusion

AI image generation

Core Concepts

Item Description
Text Prompt Description of desired image
Negative Prompt What to avoid
Steps Denoising iterations (20-50)
CFG Scale Prompt adherence (7-15)
Sampler Denoising algorithm
Seed Reproducibility number

Using Diffusers Library

from diffusers import StableDiffusionPipeline
import torch

# Load model
pipe = StableDiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1",
    torch_dtype=torch.float16
).to("cuda")

# Generate image
image = pipe(
    prompt="a cat wearing sunglasses, digital art",
    negative_prompt="blurry, low quality",
    num_inference_steps=50,
    guidance_scale=7.5,
    height=512,
    width=512
).images[0]

image.save("output.png")

Prompt Tips

  • Be specific and descriptive
  • Add style keywords (oil painting, 3D render, etc.)
  • Use negative prompts to avoid unwanted elements
  • Include quality modifiers (highly detailed, 4k, etc.)
  • Reference artists or art styles
  • Adjust CFG scale if image doesn't match prompt

Best Practices

  • Start with 512x512 for speed
  • Use 20-50 steps (more steps = diminishing returns)
  • Save seed for reproducibility
  • Use img2img for variations

💡 Pro Tips

Quick Reference

Lower CFG scale for more creative, higher for more literal

← Back to Data Science & ML | Browse all categories | View all cheat sheets