LangChain Prompt Architecture Cheat Sheet

Chains, agents, and evaluation

Last Updated: November 21, 2025

Focus Areas

Focus
Use structured prompt templates per chain step
Add evaluator or callback chains to track hallucinations

Commands & Queries

langchain-serve chain.yaml
Run the chain server
python scripts/run_agent.py --agent research_assistant
Launch an agent
langchain inspect prompt.yml
Lint prompt components

Summary

Document chain steps, evaluation metrics, and fallback behaviors for safety.

💡 Pro Tip: Start with prompt templates, log outputs, and add evaluators for hallucinatory behavior.
← Back to Data Science & ML | Browse all categories | View all cheat sheets