InfluxDB | Sheetly Cheat Sheet

Last Updated: November 21, 2025

InfluxDB

Time-series database platform

Core Concepts

Item Description
Measurement Like a SQL table
Tags Indexed metadata
Fields Actual data values
Timestamp Time of data point
Bucket Named location for time series
Flux Query and scripting language

Flux Query Examples

from(bucket: "sensors")
  |> range(start: -1h)
  |> filter(fn: (r) => r["_measurement"] == "temperature")
  |> filter(fn: (r) => r["location"] == "room1")
  |> mean()

from(bucket: "metrics")
  |> range(start: -24h)
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> aggregateWindow(every: 10m, fn: mean)

Common Operations

Item Description
Write Point Insert time-series data
Query Retrieve data with Flux
Retention Policy Auto-delete old data
Continuous Query Pre-compute aggregations
Task Scheduled Flux script

Best Practices

  • Use tags for dimensions, fields for metrics
  • Set appropriate retention policies
  • Use downsampling for old data
  • Index frequently queried tags

💡 Pro Tips

Quick Reference

InfluxDB is optimized for time-series data workloads

← Back to Databases & APIs | Browse all categories | View all cheat sheets